'Bio' means living organism; 'mimicry' means to imitate. Biomimicry is thus the practice of imitating life and nature. Its aim is to draw inspiration from nature's engineering in order to solve the world’s most pressing challenges and ensure a sustainable future for all life on earth.
According to the Biomimicry Institute, biomimicry can be defined as “an approach to innovation that seeks sustainable solutions to human challenges by emulating nature’s time-tested patterns and strategies. The goal is to create products, processes, and policies—new ways of living—that are well-adapted to life on earth over the long haul.”
Biomimicry is a process based on the observation of our planet and its 3.8 billion years of evolution and development. Historically, biological organisms (animals, plants, microbes) have been able to develop strategies to survive, optimize their organization and functioning, and adapt their form to their function. As noted by the American biologist Janine Benyus, a renowned specialist in biomimicry: “Nature has already solved all the challenges we face. Failures have become fossils, and what surrounds us is the key to survival ”. Benyus was the first scientist to pioneer the notion of biomimicry in the late 1990s by developing the basic premise that human beings should consciously emulate nature's ways when looking for solutions to their problems, products and policies.
Biomimicry is a technological-oriented approach focused on putting nature’s lessons into practice. For Janine Benyus, biomimicry sees nature as:
We have created scientific and technological achievements that have enhanced the human condition, but also disrupted the earth’s systems in extreme ways. As a result, today’s generation of researchers, designers and scientists are faced with pressing issues; their mission is to find solutions that do not add to the existing problems. As the name suggests, biomimicry aims to copy nature - not to deplete it. "Biomimicry is about valuing nature for what we can learn, not for what we can extract, harvest or domesticate" - Jane Benyus.
The concept of biomimicry is based on a key idea: nature always operates on the principles of economy and efficiency while generating no waste. As the famous French chemist, Antoine Lavoisier, said in 1774 “nothing is lost, nothing is created, everything is transformed”. No matter the field of application, the biomimetic philosophy is part of a global strategy of responsible and sustainable development that aims to balance the way the planet’s resources are used.
Biomimicry is one type of bio-inspired design, but not all bio-inspired design is biomimicry. An important factor that differentiates biomimicry from other bio-inspired design approaches is the emphasis on learning from and emulating the regenerative solutions living systems have for specific functional challenges. For example, biomorphism refers to designs that visually resemble elements from life (they “look like” nature), whereas biomimetic designs focus on function (they “work like” nature). The important difference here is looking at how nature operates.
Confusion also occurs between bio-utilization and biomimicry. The former refers to the use of biological material or living organisms in design or technology, e.g., using wood for furniture or a living wall of plants to help clean the air in an office building. Bio-utilization can be beneficial, and biomimetic designs sometimes incorporate it for this reason, however, just because a designer consults a living organism for a solution to a problem or uses a natural material, it does not mean the design is biomimetic.
"The distinctive feature of biomimicry is the study and emulation of functional strategies to create sustainable solutions that also embody the (re)connect and ethos elements" - Institute of Biomimicry.
When translating nature’s strategies into possible solutions, the science of biomimicry involves three essential elements: Emulate, Ethos, and (Re)Connect. These three components represent the core values that biomimicry is based on and aims to transmit in all its practices.
Emulate: The scientific, research-based practice of learning from and then replicating nature’s forms, processes and ecosystems to create more regenerative designs.
Ethos: The philosophy of understanding how life works and creating designs that continuously support and create outcomes conducive to life.
(Re)Connect: The concept that we are all part of nature and find value in acknowledging life’s interconnected systems. (Re)Connect as a practice encourages us to observe and spend time in nature, to understand how we are deeply connected to it, and to experience how life and its biological strategies works.
“I cannot help but feel a kinship with these trees now that I have spent years of my life trying to emulate them. In fact, I see all trees differently now.” - Alessandro Biancardi, Biomimicry Launchpad participant.
Eating is our most intimate relationship with nature. Every time we take a bite of food there is an ecological, economic and social consequence. Food and all its associated activities – land use, crop production, and supply chain - currently account for over a quarter (26%) of global greenhouse gas emissions. And since the world's population is not shrinking, this impact will only grow.
Modern agricultural practices are enormously productive, but only in the short term. The irrigation, fertilizers and pesticides upon which modern food crops depend both deplete and pollute water supplies and essential soil resources. Scientists are increasingly turning to principles of biomimicry to find solutions to these agricultural problems. Here are some examples:
Image Credits: Mushroompackaging.com
Despite drawing its inspiration from over 3 billion years of nature's evolution, biomimicry is still a relatively new emerging discipline. In the last 20 years it has spread through the design, engineering and sustainability communities, but the need to create methodologies of enquiry in more sectors continues. The bridge has to be extended between what many biologists know (e.g., the workings of a whale's heart, an organ that pumps thanks to 65,000 miles of arteries) and what architects, builders and entrepreneurs need to know. This is why Jane Benyus and her team at the Biomimicry Institute set up the website Asknature.org, a portal for all learners and educators to find out more about nature's intricate systems of survival based on 1700 featured biological strategies.
Since biomimicry is not a body of work that can be downloaded and studied in one sitting but is best learnt via practice and research, Benyus recently launched the Biomimicry Youth Design Challenge for middle and high school children and the Global Design Challenge for adult teams. These challenges call for design concepts addressing any issue(s) outlined by the Sustainable Development Goals. Successful teams define a concrete, well-researched area of focus for their design efforts and apply the core concepts and methods of biomimicry in developing a solution. Winning projects are those that go beyond familiar approaches by identifying unique leverage points for change, removing barriers to the adoption and spread of existing solutions, and/or clearly demonstrate how biomimicry can lead to new or more effective solutions.
With the aim of bringing some of these innovative projects to the real world in business terms, the Biomimicry Launchpad was subsequently established as an incubator program that helps early-stage entrepreneurs bring nature-inspired solutions to market. In the same way that entrepreneurs need to know more about how nature is the best teacher, experts in biomimicry need to understand how to harness the world of business in order to make their inventions workable and profitable. The Launchpad program features a virtual 10-week customer discovery and technology validation incubator that covers topics such as creating a business plan, understanding customer needs, articulating a value proposition and building a solid team.
Similarly, the Biomimicry Ray of Hope prize has been created to help start-ups cross the critical threshold in becoming viable businesses by amplifying visibility and providing them with equity-free funding. Great ideas need a business model and a prototype, the $100,000 prize money shines a light on the innovative, nature-inspired solutions that may otherwise go unnoticed because of lack of funding.
In January 2021, the EHL Institute of Nutrition R&D was launched by Dr Inès Blal (Co-Director of the Institute), Patrick Ogheard (Co-Director) and Cyrille Lecossois (Manager). It is one of EHL’s applied research institutes and as such, its objective is to put EHL expertise at the service of applied research by offering a unique set of deliverables to its sponsors. The mission of the EHL Institute of Nutrition R&D is to develop cutting edge solutions in food and kitchen management for healthier food with a positive social and ecological impact. The three founders envision a multi-disciplinary approach bridging biomimicry, science, management and culinary expertise is critical to the future of nutrition and F&B solutions.
A Student Business Project (SBP) was recently mandated by the latest partnership between Nestlé Research and the EHL Institute of Nutrition R&D. The project consisted of formulating biomimicry-related solutions to problems within the culinary domain such as food coloration, food packaging and food waste.